Wydaje mi się, że inwestycja w Polsce, to jest ta sama inwestycja, o której myślał Intel we Włoszech. Jest też szansa, że zaczniemy od bardzo zaawansowanej technologii, czyli Intel 4
Za start czwartej rewolucji przemysłowej przyjmuje się 2013 rok, jednak termin przemysł został użyty po raz pierwszy w 2011 podczas międzynarodowych targów Hannover Messe. W październiku 2012 roku w Niemczech utworzono grupę roboczą, której podstawowym zamiarem było zdefiniowanie kolejnych kroków zmierzających do sformułowania zasad przyszłości automatyzacji fabryk. Rezultatem działań stały się zalecenia skierowane do rządu niemieckiego dotyczące niezbędnych wdrożeń prowadzących do osiągnięcia poziomu tzw. inteligentnego końcowy z prac został zaprezentowany w kwietniu 2013 roku (również na podczas Hannover Messe). Wśród podstawowych wytycznych uwzględniono wtedy:pomysł rozwoju globalnych sieci obejmujących maszyny, systemy magazynowe i urządzenia produkcyjne do postaci systemów cyber-fizycznych,rozwój inteligentnych maszyn, systemów magazynowania i urządzeń produkcyjnych zdolnych do autonomicznej wymiany informacji, wyzwalania działań i wzajemnej kontroli,doskonalenie procesów przemysłowych związanych z projektowaniem, produkcją, zarządzaniem materiałami i łańcuchem dostaw, a także cyklem życia produktu,projektowanie, uruchamianie i rozwój inteligentnych fabryk i produktów,rozwój nowoczesnych metod komunikacji i diagnostyki obiektów przemysłowych (obejmujących swoim zakresem jednoznaczną identyfikację oraz lokalizację awarii w czasie rzeczywistym, gromadzenie danych historycznych i bieżących stanów operacyjnych).(fot. Adobe Stock)Na opisanym etapie prace nad rozwojem koncepcji wdrożenia industry były prowadzone przez platformę, którą stworzyły trzy stowarzyszenia przemysłowe: Niemieckie Stowarzyszenie Technologii Cyfrowej Bitkom, Stowarzyszenie Przemysłu Mechanicznego VDMA oraz Stowarzyszenie Producentów Przemysłu Elektrycznego i Elektronicznego ZVEI. Od tej pory idea przemysłu stała się tematem przewodnim w rozwoju przedsiębiorstw, produktów, usług, modeli biznesowych, współczesnego społeczeństwa, budynków oraz całych miast – w wielu krajach na całym świecie. Pomimo różnych charakterystyk branż poszczególnych państw istnieje silna zbieżność w zakresie rozwiązań i używanych narzędzi. Wszystkie z podjętych inicjatyw obejmują prowadzenie badań dotyczących rozwoju przemysłu a priorytetem jest przyśpieszenie wdrożenia i stosowania technologii.(graf. Adobe Stock)Przemysł w PolsceW 2016 roku do rządowej Strategii na rzecz Odpowiedzialnego Rozwoju trafił pomysł powołania Platformy Przemysłu Przyszłości. W czerwcu tego samego roku powstał Zespół ds. Transformacji Przemysłowej z pięcioma grupami roboczymi, które skoncentrowały się na:standardach, wymaganiach odnośnie infrastruktury oraz na specjalizacji inteligentnego przemysłu,wsparciu branży cyfrowej,inteligentnym oprogramowaniu i przetwarzaniu danych,zdefiniowaniu zasad odnośnie edukacji, wymaganych kompetencji i na kadrach potrzebnych przemysłowi prawnych funkcjonowania fundacji było konsekwencją projektu pt. „Inicjatywa dla polskiego przemysłu – Platforma Przemysłu Przyszłości”. 25 stycznia 2019 roku prezydent podpisał ustawę dotyczącą Platformy Przemysłu Przyszłości. W ten sposób stało się możliwe przejście od koncepcji do działania na rzecz cyfrowej transformacji polskich firm PPP (oprac. Andrzej Soldaty / graf. Lech Mazurczyk)Założenia konsumentów dyktują restrykcyjne warunki stawiane przedsiębiorcom, warunkując konieczność zmiany myślenia w zakresie podejścia do wytwarzania, zarządzania, logistyki, kultury pracy oraz ekologii. Głównym problemem współczesnego rynku jest krótki czas życia produktów i usług. Taki stan powoduje wymóg częstych zmian profilu produkcyjnego (usługowego) lub możliwość szybkiego dostosowania się do ciągle rosnących wymagań konsumentów. Można stwierdzić, że przejście na model przedsiębiorstwa zgodny z zasadami przemysłu zwiększa istotną wartość nowych i istniejących produktów, modeli biznesowych i procesów. W ciągu dziewięciu lat od zdefiniowania głównych założeń pojawiło się wiele definicji i wytycznych dla industry Zasadniczą ideę oddaje cytat z „Recommendations for implementing the strategic initiative INDUSTRIE (H. Kagermann, W. Wahlster i J. Helbig) pochodzący z 2013 roku:W przyszłości przedsiębiorstwa będą ustanawiać globalne sieci obejmujące maszyny, systemy magazynowe i urządzenia produkcyjne w postaci systemów cyber-fizycznych. W środowisku produkcyjnym takie systemy obejmą inteligentne maszyny, systemy przechowywania i urządzenia produkcyjne zdolne do autonomicznej wymiany informacji, wyzwalania działań i kontrolowania siebie nawzajem. Ułatwi to fundamentalne usprawnienia procesów przemysłowych związanych z produkcją, inżynierią, zastosowaniem materiałów i łańcuchem dostaw oraz zarządzaniem cyklem życia. Inteligentne fabryki, które już zaczynają funkcjonować, stosują zupełnie nowe podejście do produkcji. Inteligentne produkty są jednoznacznie identyfikowalne, mogą być na bieżąco lokalizowane i znać swoją historię, bieżący status oraz alternatywne drogi prowadzące do osiągnięcia docelowego stanu.(graf. Adobe Stock)Postać definicji stopniowo ewoluowała, jednak koncepcja wdrożenia systemów cyber-fizycznych pozostała niezmienna. Kolejnym krokiem rozwoju było zdefiniowanie technologii bazowych, na których oparto podstawy opracowania rzeczywistych systemów produkcyjnych. Kompleksowe wdrożenie wszystkich technologii jest zadaniem, któremu sprostać mogą jedynie przedsiębiorstwa cechujące się wysokim stopniem automatyzacji produkcji oraz budżetem inwestycyjnym. Należy także pamiętać, że pomiędzy poszczególnymi składowymi występują silne powiązania, które przy implementacji jednego z rozwiązań powodują konieczność uzupełnienia wdrożenia o kolejne elementy.(graf. Lech Mazurczyk)Drugie podejście stanowi uproszczone spojrzenie na problem i odnosi się jedynie do wybranych grup technologii składowych. Brakuje w nim jednak bardzo ważnego czynnika w postaci digitalizacji produkcji, logistyki oraz zarządzania. W fazie rozwoju i testowania aplikacji przemysłowych do wstępnie zdefiniowanych technologii dodano kolejne, jednak sztuczna inteligencja staje się obecnie dominującym trendem w wielu aplikacjach dla mnie wyniknie z przejścia na poziom nowych technologii produkcyjnych stanowi nieodłączną część działań wszystkich zakładów, a korzyści szybko występują w wielu obszarach:poprawa produktywności – wytwarzanie większej liczby produktów lub usług przy jednoczesnej alokacji zasobów w bardziej opłacalny i wydajny sposób, minimalizacja liczby przestojów (dzięki wdrożeniu monitorowania maszyn i zautomatyzowanemu podejmowaniu decyzji),poprawa wydajności – możliwość szybkiej zmiany wolumenów partii produkcyjnych, zastosowanie automatycznych procesów śledzenia i raportowania, usprawnienie procesu wprowadzenia nowych produktów oraz podejmowania decyzji biznesowych,zwiększenie stopnia dzielenia się wiedzą i współpracą – implementacja komunikacji między liniami produkcyjnymi, procesami biznesowymi i działami (bez względu na lokalizację, strefę czasową, platformę lub inne zewnętrzne czynniki), zautomatyzowana dystrybucja informacji na poziomie całej fabryki realizowana na bazie rozwiązań typu machine to machine i system to system, bez żadnej interwencji człowieka,elastyczność i zwinność – łatwiejsze skalowanie istniejących produktów oraz wprowadzanie nowych na dostępne linie produkcyjne, z drugiej strony możliwość wykonania jednorazowych i niepowtarzalnych serii produkcyjnych,ułatwienie uzyskania zgodności – automatyzacja metod i procesów oceny zgodności, w tym śledzenie, inspekcje jakości, kontrola i wprowadzenie seryjności produkcji, rejestrowanie danych i innych czynności pośrednich,poprawa obsługi klienta – eliminacja braku dostępności oferowanych produktów lub usług, zwiększenie dostępnego asortymentu oraz możliwość konfiguracji asortymentu produkowanego w małych seriach (na wyraźne żądanie odbiorcy),zmniejszenie kosztów – uzyskiwane w wyniku automatyzacji, integracji systemów, zarządzania danymi, obsługi napraw i przeglądów, logistyki itp. (ważnymi wskaźnikami w tym zakresie są także > zwiększenie stopnia wykorzystania zasobów, zarówno produkcyjnych, jaki i ludzkich, szybsza produkcja, minimalizacja lub całkowita eliminacja przestojów maszyn i linii produkcyjnych, stopniowa eliminacja problemów związanych z jakością produktów, zmniejszenie marnotrawstwa zasobów, materiałów i produktów, niższe ogólne koszty operacyjne wynikające z wdrożenia opisanych elementów),poszerzenie pola do tworzenia, rozwoju i wdrażania innowacji – poprzez zwiększenie wiedzy na temat procesu produkcyjnego, łańcuchów dostaw i dystrybucji, wydajności biznesowej, a także samych produktów,zwiększenie obrotu i przychodu,podniesienie rentowności – czynnik warunkowany przez wyższe przychody przy jednocześnie zmniejszonym poziomie kosztów, wytwarzanie produktów o wyższej jakości oraz wyższym stopniu innowacyjności technologicznej lub funkcjonalnej, możliwość oferowania klientom spersonalizowanych produktów przy jednoczesnym zastosowaniu metod produkcji masowej, zwiększenie jakości oraz dostępności usług oferowanych klientom i poprawa jakości obsługi klienta,ugruntowanie albo wzrost znaczenia marki produktu/przedsiębiorstwa, a także lepsza rozpoznawalność na rynkach lokalnym i koncepcje stanowią ogólne ujęcie problemu odnoszące się do wszystkich zastosowań (nie tylko przemysłowych). Jak jednak podejść do rozwoju nowoczesności zakładów produkcyjnych w kontekście przemysłu Lech Mazurczyk)Inteligentna fabryka i przemysł związane z rozwojem przemysłu doprowadziły do pojawienia się wielu pomysłów na wdrożenie innowacyjnych technologii w zakresie produkcji i zarządzania. Spojrzenie na nowoczesny przemysł w kontekście technologii bazowych może doprowadzić do wniosku, że przedsiębiorstwo musi wdrożyć wszystkie technologie składowe – tak jednak nie jest, a częściowe rozwiązanie problemu interpretacji zakresu wdrożenia stanowią dwa pojęcia:Inteligentny przemysł – idea zakładająca kompleksową cyfryzację, łączenie produktów, maszyn i ludzi oraz stosowanie nowoczesnych technologii produkcji, inteligentny przemysł łączy, bez względu na przyjęte składowe, trzy elementy > technologie produkcyjne, digitalizację oraz sieć pomiędzy uczestnikami rynku, systemami i użytkownikami końcowymi,Inteligentna fabryka – fabryka bazująca na systemach cyber-fizycznych, które komunikują się ze sobą przy pomocy internetu rzeczy oraz internetu usług, w zakresie inteligentnej fabryki występują także > internet danych oraz internet ludzi, tak sprzężone elementy tworzą kompleksowy system techniczny.(graf. Lech Mazurczyk)Inteligentny przemysł tworzą smart fabryki powiązane siecią. Stopień rozwoju fabryki klasyfikowany jest na podstawie czterech poziomów związanych z używaniem danych.(oprac. Mariusz Hetmańczyk)Digitalizacja oraz ustanowienie sieci nie są możliwe bez nowoczesnych maszyn warunkujących zastosowanie innowacyjnych metod wytwarzania, a podstawą zbudowania inteligentnej fabryki pozostaje wdrożenie zaawansowanej technologicznie produkcji. W tym celu warto poznać podstawowe aspekty i wytyczne dla transformacji zakładów przemysłowych wspomagające proces identyfikacji aktualnego stanu oraz rekomendacje na temat dalszych działań. Poziom dojrzałości cyfrowej swojej firmy można sprawdzić za pomocą internetowego narzędzia Platformy Przemysłu Przyszłości. Test trwa 15 minut, uczestnik natychmiast otrzymuje wynik i rekomendacje. A zaawansowanej produkcji w cyfrowej fabryce będzie poświęcony kolejny artykuł, który opublikujemy w portalu wkrótce.
Przemysł w Polsce. 27 lipca 2022 Napisał dr Bartłomiej Kulas. Dodaj komentarz. Przemysł w Polsce przez wiele lat znajdował się w głębokim kryzysie na skutek jego upadku pod koniec PRL. Obecnie Polska przechodzi renesans rozwoju przemysłu i realizuje program reindustrializacji. Nasze państwo jest 7 największym w UE i 21 na świecie
Przemysł jest zasadniczo działem opartym o tradycyjne technologie. Od pewnego czasu dynamicznie rozwija się jednak tak zwany przemysł zaawansowanych technologii (ang. high-technology) oparty o inną filozofię produkcji i zarządzania. Rola przemysłu tradycyjnego stale spada, a nowe technologie zaczynają przejmować prym. Spis tematów (kliknij, aby przejść do wyboru tematów) Przemysł II Przemysł tradycyjny a przemysł zaawansowanych technologii 1. Różnice między przemysłem tradycyjnym i zaawansowanych technologii Tradycyjna działalność przemysłowa oparta jest o sprawdzone rozwiązania technologiczne oraz o wypracowane przez lata modele zarządzania. Podstawową cechą tego przemysłu jest mało zaawansowane przetwórstwo surowców, prowadzące do powstawania zarówno dóbr konsumpcyjnych jak i półproduktów produkcyjnych (do dalszego przetworzenia). Przemysł tradycyjny obejmuje wszystkie typowe gałęzie przemysłu, oparte o sprawdzone przez lata technologie. Przemysł zaawansowanych technologii opiera się z kolei na innowacjach. Dominują zarówno nowe metody produkcji, jak i nowe modele zarządzania. Gotowy produkt cechuje się wysokim stopniem zaawansowania technicznego, często przeznaczony jest jedynie dla wyspecjalizowanych odbiorców. Bardzo istotnym elementem tego typu przemysłu jest udział zaplecza naukowo-badawczego w tworzeniu wyrobów przemysłowych. W przemyśle zaawansowanych technologii wyróżnia się zasadniczo dwie fazy pracy – fazę innowacji (prace naukowo-badawcze, koncepcyjne i wdrożeniowe) oraz fazę produkcji (produkcja masowa gotowego wyrobu). W każdej z nich inne warunki decydują o umiejscowieniu zakładów. W obrębie przemysłu zaawansowanych technologii można wyróżnić takie branże jak: Przemysł biotechnologiczny Przemysł nanotechnologiczny Przemysł teleinformatyczny Przemysł farmaceutyczny (nowe generacje leków) Przemysł zaawansowanej elektorniki Przemysł lotniczy i rakietowy Niektóre branże przemysłu zbrojeniowego Przemysł specjalistycznych instrumentów medycznych i optycznych Produkcja robotów Dynamicznie rozwija się wykorzystanie nowych technologii do produkcji wyrobów medycznych Źródło: 2. Czynniki lokalizacji przemysłu tradycyjnego i przemysłu nowych technologii Działalność z zakresu przemysłu tradycyjnego i przemysłu high-tech (w fazie innowacji) ma inne kluczowe czynniki lokalizacji. Zasadniczo jednak lokalizacja przemysłu high-tech w fazie produkcji masowej skłania się ku czynnikom typowym dla przemysłu tradycyjnego. W zakresie środowiska naturalnego: Lokalizacja przemysłu tradycyjnego jest często uwarunkowana od warunków klimatycznych oraz warunków terenowych. Produkcja niektórych wyrobów nie jest możliwa (lub utrudniona) w określonych strefach klimatu, przeszkodą mogą być także warunki geologiczne lub ukształtowanie powierzchni. Dla przemysłu tradycyjnego optymalny jest klimat umiarkowany i nizinne (lub równinne) ukształtowanie powierzchni. Tradycyjne warunki naturalne nie odgrywają istotnej roli w lokowaniu przemysłu zaawansowanych technologii, w przeciwieństwie do ogólnego stanu środowiska naturalnego. Udowodniono, że osoby z sektora high-tech pracujące w naturalnym i niezdegradowanym środowisku są o wiele bardziej efektywnie. W zakresie zasobów materiałowych: Przemysł tradycyjny opiera się o bazę surowcową – która można by wykorzystać do przetworzenia. Przyczynia się to do częstego lokalizowania zakładów w pobliżu złóż surowców, albo w miejscach gdzie łatwo jest je dostarczyć (dobrze skomunikowanych i łatwo dostępnych). Przemysł zaawansowanych technologii opiera się na kapitale finansowym. Drogie badania naukowe poprzedzające wdrożenie produktu, wymagają odpowiedniego zaplecza. Stąd częsta lokalizacja tego przemysłu w otoczeniu instytucji biznesu i finansów. W zakresie zasobów pracy: Przemysł tradycyjny opiera się w największym stopniu o tanią siłę roboczą. Masowa produkcja dóbr wymaga znacznego zatrudnienia po optymalnie niskich kosztach, stąd lokalizacja zakładów w dużych ośrodkach oraz w miejscach oferujących obniżenie kosztów pracy (np. za sprawą ulg podatkowych lub dofinansowania). Przemysł zaawansowanych technologii jest uzależniony od wykwalifikowanej kadry, zwłaszcza na pierwszym etapie prac poświęconym koncepcji i opracowaniu produktu. Stąd lokalizacja zakładów wokół dużych metropolii, gdzie znajduje się wiele osób z wyższym wykształceniem. W zakresie zapewnienia warunków pracy: Przemysł tradycyjny często wymaga dużej bazy energetycznej, czyli stałego dostępu do niekończących się zasobów energii. Stąd lokalizacja zakładów w miejscach o stabilnych warunkach energetycznych, a najlepiej w regionach produkcji energii. Przemysł zaawansowanych technologii wymaga zaplecza naukowo-badawczego czyli obecności instytutów naukowych i uczelni wyższych. Zapewniają one napływ innowacji oraz wykwalifikowanej kadry, a także mogą wspierać proces badawczy i wdrożeniowy. Stąd lokalizacja tego przemysłu w sąsiedztwie takich ośrodków. W zakresie infrastruktury: W przemyśle tradycyjnej bardzo istotną rolę odgrywa infrastruktura techniczna, która ułatwia transport półproduktów oraz gotowych wyrobów do miejsc ich dystrybucji. Stąd lokowanie przemysłu w miejscach o wyższym poziomie rozwoju infrastruktury technicznej. W przemyśle zaawansowanych technologii infrastruktura techniczna także odgrywa istotną rolę, ale duże znaczenie mają infrastruktura telekomunikacyjna oraz infrastruktura społeczna. Pierwsza zapewnia odpowiedni poziom łączności, często niezbędnej do komunikowania się naukowców i dystrybutorów z całego świata, druga z kolei zapewnia odpowiednie wsparcie instytucjonalne w zakresie rozwoju przedsiębiorczości (zwłaszcza dla start-upów). W zakresie polityki: W przemyśle tradycyjnym czynniki polityczne odgrywają istotną rolę zwłaszcza na poziomie lokalnym. Ważne są przede wszystkim bezpośrednie ulgi inwestycyjne oraz dotacje i dofinansowania. Polityka jest częstą przyczyną lokalizacji określonych zakładów np. w celu zmniejszenia bezrobocia. Zakłady będą częściej lokowane w miejscach udzielających konkretnego wsparcia np. w Specjalnych Strefach Ekonomicznych. W przemyśle zaawansowanych technologii większe znaczenie mają czynniki polityczne na poziomie krajowym lub międzynarodowym. Bezpośrednie wsparcie nie jest tak istotne (poza wyspecjalizowanymi instytucjami wsparcia start-upów) jak przyjazne prawo, stabilność polityczna, dobra polityka edukacyjna oraz łatwość handlu, swoboda przemieszczania się, a nawet swobody polityczne. Rola czynników lokalizacji przemysłu zmienia się w czasie. Wraz z rozwojem przemysłu wysokich technologii oraz odgrywaniem przez niego coraz większej roli w światowej gospodarce, rośnie także znaczenie do tej pory niedocenianych czynników lokalizacji przemysłu, takich jak infrastruktura społeczna czy zaplecze naukowo-badawcze oraz przyjazna polityka państwa, maleje z kolei rola czynników tradycyjnych – przede wszystkim dostępu do bazy surowcowej i bazy energetycznej, zmniejsza się też znaczenie taniej siły roboczej (która jest jednak nadal niezbędna – na etapie produkcyjnym, choć częściowo wypierana jest przez maszyny). W kolejnych latach będziemy obserwowali coraz bardziej daleko idące zmiany. Wiele z nich może być bardzo korzystnych. Należy wiązać nadzieje przede wszystkim ze zmniejszeniem presji na środowisko wywieraną przez przemysł. W High-Tech jest ona znacznie mniejsza, więc rozwój tego sektora może pomóc rozwiązać globalne problemy np. spowolnić proces globalnego ocieplenia. 3. Cechy przemysłu tradycyjnego i przemysłu zaawansowanych technologii – porównanie Cecha charakterystycznaPrzemysł tradycyjnyPrzemysł zaawansowanych technologii Zależność od surowcówSzeroka grupa, duży udział surowców energetycznychWęższa grupa, głównie surowce wykorzystywane w elektronice Koszty inwestycjiŚrednie lub wysokieBardzo wysokie Ryzyko działalnościNiskie lub średnieWysokie lub bardzo wysokie Stopa zwrotu (zyskowność)Niska lub średniaZróżnicowana - od ujemnej do bardzo wysokiej Typ pracownikówTania siła roboczaWykwalifikowana kadra Stopień automatyzacji produkcjiNiski lub średniWysoki Wpływ na środowisko naturalne (uciążliwość)Średni lub wysokiBardzo niski Typ zaspokajanych potrzebPotrzeby niższego i średnio rzęduPotrzeby średniego i wyższego rzędu 4. Skutki rozwoju nowoczesnego przemysłu Skutki rozwoju przemysłu zaawansowanych technologii możemy podzielić na gospodarcze oraz społeczne. Skutki gospodarcze rozwoju przemysłu high-tech: Wzrost innowacji w gospodarce i przyspieszenie tempa wzrostu gospodarczego. Rozwój kolejnych nowych działów gospodarki i tworzenie w nich kolejnych miejsc pracy. Większa zamożność pracowników sektora przemysłowego pozwalająca na podniesienie poziomu ich życia. Szybszy postęp technologiczny i rozwój wynalazków. Wzrost zamożności państw inwestujących w high-tech za sprawą zysków z eksportu oraz opodatkowania. Rozwój technologii przyczyni się wkrótce do pojawienia się „ery robotów” Źródło: Skutki społeczne rozwoju przemysłu high-tech: Zmiany cywilizacyjne związane z upowszechnieniem nowych technologii w życiu codziennym. Dynamizacja rozwoju sektora usługowego w branżach współpracujących. Zmniejszenie liczby wypadków w pracy poprzez zastąpienie pracy ludzkiej przez maszyny. Poprawa stanu środowiska naturalnego korzystnie wpływająca na zdrowie ludności. Wzrost znaczenia edukacji i wykształcenia wyższego w społeczeństwie. Wyższa kultura pracy. Więcej bardziej różnorodnych stanowisk pracy. Wraz z rozwojem przemysłu high-tech będzie wzrastać rola wyższego wykształcenia Źródło: Rozwój nowoczesnego przemysłu często będzie się odbywał kosztem likwidacji tradycyjnych zakładów przemysłowych. Może się to wiązać z następującymi zagrożeniami: Bezrobocie technologiczne związane z wypieraniem pracy ludzkiej przez maszyny. Niezdolność dostosowania się (zwłaszcza osób starszych) do zachodzących coraz szybciej zmian technologicznych i cywilizacyjnych. Wzrost metropolizacji skutkujący coraz większą marginalizacją peryferiów. Pogorszenie statusu społecznego i finansowego pracowników fizycznych i osób o niskich kwalifikacjach. Pogłębienie nierówności społecznych między wykształconymi-bogatymi i niewykwalifikowanymi-biednymi.
Oversættelse af "przemysł zaawansowanych technologii" til dansk . avanceret industri er oversættelsen af "przemysł zaawansowanych technologii" til dansk. Eksempel på oversat sætning: Należy wziąć również pod uwagę, że zaniknięcie przemysłu zaawansowanych technologii odbiłoby się niekorzystnie na przemyśle telewizyjnym jako całości. ↔ Det blev også fastslået, at hvis
Rewitalizacja przemysłu mikroelektronicznego w Polsce oraz wdrażanie zaawansowanych technologii fotonicznych to główne cele Łukasiewicza – Instytutu Mikroelektroniki i i fotonika to dwie kluczowe technologie umożliwiające dostarczanie użytkownikom innowacyjnych rozwiązań. Dzięki kompetencjom zespołu Instytutu oraz unikatowej infrastrukturze badawczej w IMiF powstają projekty z zakresu telemedycyny, energoelektroniki, zaawansowanej inżynierii materiałowej i rezultaty odpowiadają na potrzeby współczesnego społeczeństwa i przemysłu. Naukowcy i inżynierowie opracowują np. bioczujniki do detekcji wirusów, czujniki do zdalnego monitorowania parametrów fizjologicznych pacjenta, do sygnalizowania zagrożeń pojawiających się w środowisku, jakości wody oraz nadzorowania procesów produkcyjnych w przemyśle w Łukasiewicz – Instytucie Mikroelektroniki i FotonikiPonad 250 projektów badawczych w ciągu 6 latŁukasiewicz – IMiF powstał w październiku 2020 r. w wyniku połączenia Instytutu Technologii Elektronowej i Instytutu Technologii Materiałów Elektronicznych. Instytut to nie tylko kilkadziesiąt lat doświadczenia, ale przede wszystkim kadra składająca się z inżynierów, fizyków i chemików oraz dostęp do unikatowych nowocześnie wyposażonych laboratoriów. To gwarancja prowadzenia wysokiej jakości projektów naukowych i prac B+R w obszarach zaawansowanych materiałów, mikro- i nanoelektroniki oraz fotoniki.− W czasie transformacji ustrojowej mikroelektronika została całkowicie zapomniana. Teraz, wraz z synergią kadr i zasobów technologicznych, zwiększyliśmy możliwości badawcze i wdrożeniowe dla biznesu w Polsce. Dysponujemy wysublimowaną infrastrukturą badawczą, dzięki której możemy podejmować wyjątkowo złożone wyzwania i badania. Bierzemy udział w krajowych i europejskich projektach, szukamy odpowiedzi na problemy i wyzwania współczesnego świata, takie jak zanieczyszczenia powietrza oraz źródła nowej, czystej energii – podkreśla dr inż. Piotr Guzdek, zastępca dyrektora ds. projektów jest finansowanych z programów UE, Horyzont 2020. Sieć Badawcza Łukasiewicz i Instytut zainicjowały także 3 projekty o dużym znaczeniu dla rozwoju polskiej gospodarki: budowę fabryki układów scalonych, linii pilotażowej przyrządów na bazie azotku galu oraz Centrum Fotoniki służące ludziom i środowiskuZe swoimi pomysłami trafiają do Instytutu innowacyjni przedsiębiorcy z Polski. Razem z nimi naukowcy z IMiF rozwijają technologie, które mają służyć nie tylko rozwojowi nauki, ale przede wszystkim jest specjalna wkładka do obuwia, która zbiera dane na temat pracy stopy podczas naturalnego ruchu – biegania, skakania i chodzenia. Informacje te pozwolą lekarzom na dopasowanie indywidualnej terapii dla osób z wadami stóp, po urazach i złamaniach lub pomogą zaproponować ćwiczenia odciążające stopę w przypadku otyłości lub stopy cukrzycowej. − Tym projektem, realizowanym wspólnie z firmą Orto-med i Szpitalem Uniwersyteckim z Zakopanego, mamy nadzieję zainteresować Ministerstwo Zdrowia i zachęcić je do przeprowadzenia badań przesiewowych wśród dzieci i młodzieży w zakresie wad postawy – tłumaczy dr inż. Ewa Klimiec, pomysłodawca na potrzeby współczesnego świataŁukasiewicz – IMiF prowadzi innowacyjne prace badawcze w dziedzinie fotoniki, uważanej za technologię XXI w. Naukowcy pracują nad opracowaniem optycznych, miniaturowych układów scalonych w zakresie podczerwieni, tzw. Photonic Integrated Circuits (PICs), które są fotonicznym odpowiednikiem mikroprocesorów i otwierają nowe możliwości dla wielu gałęzi przemysłu i życia portfolio kluczowych technologii fotonicznych, które mają ogromny potencjał aplikacyjny, należy zaliczyć technologie światłowodowe i mikrooptyczne, np. lasery i detektory promieniowania. Instytut ma w ofercie technologię wytwarzania nowych materiałów: węglika krzemu, grafenu epitaksjalnego i płatkowego, zaawansowanej ceramiki. Bada ich właściwości pod kątem przemysłowego z tych wynalazków muszą poczekać na swój moment w historii, ale zespół IMiF chce tę historię tworzyć i odegrać rolę w ich wrażaniu.
Cyfryzacja, technologie przemysłu 4.0, a także zaostrzająca się polityka klimatyczna i środowiskowa – to jedne z głównych tematów, którymi żyje przemysł chemiczny w Polsce. Po XXVI Sympozjum Naukowo-Technicznym CHEMIA 2020 przyglądamy się wyzwaniom i trendom, które będą wyznaczały kierunki rozwoju branży.
Przemysł zaawansowanych technologii, tzw. high-tech (ang. high technology), to nowoczesne gałęzie, do których zalicza się: technologie informatyczne i telekomunikacyjne, a także biotechnologię, nanotechnologię i robotykę. Zobacz prezentacje; Notatka kl7b – Natalia S. Czynniki lokalizacji to przesłanki pozwalające wybrać optymalną lokalizację zakładu przemysłowego. Czynniki lokalizacji nowoczesnego przemysłu to nowoczesna infrastruktura, zaplecze naukowo‑badawcze, czyste i przyjazne człowiekowi środowisko. Wysoka kapitałochłonność przemysłu high‑tech powoduje, że rozwija się on przede wszystkim w państwach wysoko rozwiniętych. Zakłady przemysłu zaawansowanych technologii grupują się w klastry i dystrykty przemysłowe, tworząc bieguny technologiczne, które z kolei skupiają się w technopolie. Obszary przemysłu wysokiej technologii pełnią funkcje ekonomiczne, przestrzenne i społeczne. Czytaj więcej…. Przemysł TRADYCYJNY I NOWOCZESNY NA ŚWIECIE. Rola przemysłu high-tech;
Tłumaczenia w kontekście hasła "Sektory zaawansowanej technologii" z polskiego na niemiecki od Reverso Context: Sektory zaawansowanej technologii w Europie są dość dobrze rozwinięte w zakresie wdrażania innowacji cyfrowych, duża część MŚP, spółek o średniej kapitalizacji i branż nietechnologicznych nadal jednak pozostaje w tyle.
Zaloguj się Załóż konto Menu Oferta edukacyjna Szkoły językowe i uczelnie Zaloguj się Załóż konto Przejdź do listy zasobów. prowadzenie lekcji Filtry: karty pracy Poziom: Część 2 / 4. Przemysł Zaktualizowany: 2015-09-01
. 196 654 262 412 40 547 332 464
przemysł zaawansowanej technologii w polsce